Extending Pywr with custom Parameters

Pywr provides many existing Parameters that can be used to model complex behaviours. This includes parameters that read data in different formats (e.g. the dataframe parameter), parameters that solve specific problems (e.g. reservoir control curves) and general purpose parameters (e.g. the AggregatedParameter).

Custom parameters can be used to model specific behaviours otherwise not possible with the existing parameters. To write a custom parameter you must (as a minimim) inherit from the base pywr.parameter.Parameter class and implement the Parameter.value method. The arguments to this method represent the current timestep and scenario allowing the value of the parameter to be dynamic.

A simple parameter

The example below shows a minimal parameter which returns the same value every timestep. The parameter is initialised with the value to return, which it stores in the _value attribute on the instance *. This value is returned whenever the value method is queries. The load class method is used to create an instance of the parameter from JSON.

from pywr.parameters import Parameter

class MyParameter(Parameter):
    def __init__(self, model, value, **kwargs):
        # called once when the parameter is created
        super().__init__(model, **kwargs)
        self._value = value

    def value(self, timestep, scenario_index):
        # called once per timestep for each scenario
        return self._value

    def load(cls, model, data):
        # called when the parameter is loaded from a JSON document
        value = data.pop("value")
        return cls(model, value, **data)

MyParameter.register()  # register the name so it can be loaded from JSON

_value is used instead of value to avoid overloading the method of the same name.

An instance of the parameter can be created from a JSON model as below. The type of the parameter is the class name, with the word “parameter” optionally removed (e.g. "constant" and "constantparameter" both create an instance of ConstantParameter).

"max_flow": {
    "type": "myparameter",
    "value": 123.0

Timesteps and scenarios

The Parameter.value method is called once per timestep for each scenario. The value it returns can be varied using the timestep and scenario_index arguments. For example, a simple version of a MonthlyProfileParameter could be created using the following:

class MonthlyProfileParameter(Parameter):
    def __init__(self, model, profile, **kwargs):
        super().__init__(model, **kwargs)
        self.profile = profile  # a 12-element list of floats

    def value(self, timestep, scenario_index):
        index = timestep.month - 1  # convert to zero-based index
        value = self.profile[index]

    def load(cls, model, data):
        profile = data.pop(profile)
        return cls(model, profile, **data)

Tracking state with setup, reset, before and after

The Parameter.setup and Parameter.reset methods are called once at the start of a model run before the first timestep. The reset method is called for every run, while the setup method is only called if the structure of the model has changed .

The Parameter.before and Parameter.after methods are called before and after each timestep, respectively. These methods can be used when a parameter needs to track state between timesteps. For example, a licence parameter needs to track the volume remaining in the licence. It’s important to remember that when using scenarios the model has multiple states. It’s good practice to write stateful parameters with this in mind, even if you aren’t using scenarios initially, so that you can in the future without rewriting anything. The example below shows a very simplistic licence parameter which has a finite volume.

class LicenceParameter(Parameter):
    def __init__(self, model, total_volume, **kwargs):
        super().__init__(self, model, **kwargs)
        self.total_volume = total_volume

    def setup(self):
        # allocate an array to hold the parameter state
        num_scenarios = len(self.model.scenarios.combinations)
        self._volume_remaining = np.empty([num_scenarios], np.float64)

    def reset(self):
        # reset the amount remaining in all states to the initial value
        self._volume_remaining[...] = self.total_volume

    def value(self, timestep, scenario_index):
        # return the current volume remaining for the scenario
        return self._volume_remaining[scenario_index.global_id]

    def after(self):
        # update the state
        timestep = self.model.timestepper.current  # get current timestep
        flow_during_timestep = self._node.flow * timestep.days  # see explanation below
        self._remaining -= flow_during_timestep
        self._remaining[self._remaining < 0] = 0  # volume remaining cannot be less than zero

    def load(self, model, data):
        total_volume = data.pop("total_volume")
        return cls(model, total_volume, **data)

The example above uses the _node attribute of the parameter, which is automatically set when the parameter is attached to a node. The flow attribute of the node represents the flow (per day) via that node. To get the total flow for the timestep it must be multipled by the number of days in the timestep, available as timestep.days.

The model is said to be “dirty” if nodes or edges are added or removed, resulting in a change to the structure of the linear programme used to solve the model. This usually requires Parameters which track state to reallocate memory, instead of just resetting values.

Dependency on other parameters

The value of each parameter is calculated at the start of every timestep. A dependency tree is used to ensure that parameters are evaluated in the correct order and that there are no circular dependencies . For example, the AggregatedParameter returns the aggregated value of a set of parameters using a user-defined function. In the terminology of the dependency tree the AggregatedParameter is the parent of the other parameters, which are it’s children. When writing a parameter these dependencies need to be defined explicitly by modifying the Parameter.parents or Parameter.children attributes.

To get the value of a child parameter use the Parameter.get_value method, or for the index use Parameter.get_index. These methods return the value/index for the current timestep and scenario. To access the value from previous timesteps you must manually track the state of the child parameters.

The pywr.parameters.load_parameter function is used to load parameters from JSON. This works with both references to parameters and nested parameters.

As an example, see a simplified version of AggregatedParameter that returns the sum value of it’s child parameters.

class SumParameter(Parameter):
    def __init__(self, model, parameters, **kwargs):
        super().__init__(model, **kwargs)
        self.parameters = parameters
        for parameter in self.parameters:

    def value(self, timestep, scenario_index):
        total_value = sum([parameter.get_value(scenario_index) for parameter in parameters])
        return total_value

    def load(self, model, data):
        parameters = [load_parameter(parameter_data)
                      for parameter_data in data.pop("parameters")]
        return cls(model, parameters, **data)

A circular dependency is when two (or more) parameters depend on each other. This can be direct (e.g A depends on B, B depends on A) or indirect (e.g. A depends on B, B depends on C, C depends on A). Pywr is unable to resolve the order in which to calculate these parameters and will raise an error at runtime.

Improving performance with Cython

Parameters are evaluated many times and can be a significant part of the model run time. Many of the parameters in the core library have been written in Cython to improve performance. Custom parameters can be written in Cython too. Cython can also be used to link to external C/C++ libraries.

A full tutorial in Cython is beyond the scope of this documentation - see the Cython Documentation.

The easiest way to compile and run custom parameters written in Cython is using the pyximport command, which compiles pyx modules at runtime. If the parameter is linking to a foreign library you may need to compile using a setup.py in order to pass linker arguments.

The example below demonstrates a custom parameter which uses a function from a foreign library (the pow function from libm). There are a few differences from the Python equivalent:

  • Use of the cimport statement

  • Inherit from pywr.parameters._parameters.Parameter

  • The value method is defined as a cpdef function. This signature must match exactly.

from pywr.parameters._parameters cimport Parameter
from pywr._core cimport Timestep, ScenarioIndex

cdef extern from "math.h":
    double pow(double x, double y)

cdef class SquaredParameter(Parameter):
    cdef double _value

    def __init__(self, model, value, **kwargs):
        super().__init__(model, **kwargs)
        self._value = value

    cpdef double value(self, Timestep ts, ScenarioIndex scenario_index) except? -1:
        return pow(self._value, 2.0)

    def load(cls, model, data):
        # called when the parameter is loaded from a JSON document
        value = data.pop("value")
        return cls(model, value, **data)

import pyximport

from pywr.model import Model
import custom_parameters

model = Model.load("simple.json")