pywr.parameters.DataFrameParameter
- class pywr.parameters.DataFrameParameter(model, dataframe, scenario=None, timestep_offset=0, **kwargs)
Timeseries parameter with automatic alignment and resampling
- Parameters:
- modelpywr.model.Model
- dataframepandas.DataFrame or pandas.Series
- scenario: pywr._core.Scenario (optional)
- timestep_offsetint (default=0)
Optional offset to apply to the timestep look-up. This can be used to look forward (positive value) or backward (negative value) in the dataset. The offset is applied to dataset after alignment and resampling. If the offset takes the indexing out of the data bounds then the parameter will return the first or last value available.
- __init__(*args, **kwargs)
Methods
__init__(*args, **kwargs)after(self)before(self)finish(self)get_all_values(self)get_constant_value(self)Return a constant value.
get_double_lower_bounds(self)get_double_upper_bounds(self)get_double_variables(self)get_integer_lower_bounds(self)get_integer_upper_bounds(self)get_integer_variables(self)get_value(self, ScenarioIndex scenario_index)load(cls, model, data)register(cls)reset(self)set_double_variables(self, double[)set_integer_variables(self, int[)setup(self)unregister(cls)value(self, Timestep timestep, ...)Attributes
childrencommentcomment: str
dataframedataframe: object
double_sizedouble_size: 'int'
integer_sizeinteger_size: 'int'
is_constantis_variableis_variable: 'bool'
modelnameparentsscenarioscenario: pywr._core.Scenario
sizetagstags: dict
timestep_offsettimestep_offset: 'int'