pywr.parameters.DataFrameParameter
- class pywr.parameters.DataFrameParameter(model, dataframe, scenario=None, timestep_offset=0, **kwargs)
Timeseries parameter with automatic alignment and resampling
- Parameters:
- modelpywr.model.Model
- dataframepandas.DataFrame or pandas.Series
- scenario: pywr._core.Scenario (optional)
- timestep_offsetint (default=0)
Optional offset to apply to the timestep look-up. This can be used to look forward (positive value) or backward (negative value) in the dataset. The offset is applied to dataset after alignment and resampling. If the offset takes the indexing out of the data bounds then the parameter will return the first or last value available.
- __init__(*args, **kwargs)
Methods
__init__
(*args, **kwargs)after
(self)before
(self)finish
(self)get_all_values
(self)get_constant_value
(self)Return a constant value.
get_double_lower_bounds
(self)get_double_upper_bounds
(self)get_double_variables
(self)get_integer_lower_bounds
(self)get_integer_upper_bounds
(self)get_integer_variables
(self)get_value
(self, ScenarioIndex scenario_index)load
(cls, model, data)register
(cls)reset
(self)set_double_variables
(self, double[)set_integer_variables
(self, int[)setup
(self)unregister
(cls)value
(self, Timestep timestep, ...)Attributes
children
comment
comment: unicode
dataframe
dataframe: object
double_size
double_size: 'int'
integer_size
integer_size: 'int'
is_constant
is_variable
is_variable: 'bool'
model
name
parents
scenario
scenario: pywr._core.Scenario
size
tags
tags: dict
timestep_offset
timestep_offset: 'int'