pywr.parameters.DataFrameParameter

class pywr.parameters.DataFrameParameter(model, dataframe, scenario=None, timestep_offset=0, **kwargs)

Timeseries parameter with automatic alignment and resampling

Parameters:
modelpywr.model.Model
dataframepandas.DataFrame or pandas.Series
scenario: pywr._core.Scenario (optional)
timestep_offsetint (default=0)

Optional offset to apply to the timestep look-up. This can be used to look forward (positive value) or backward (negative value) in the dataset. The offset is applied to dataset after alignment and resampling. If the offset takes the indexing out of the data bounds then the parameter will return the first or last value available.

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

after(self)

before(self)

finish(self)

get_all_values(self)

get_constant_value(self)

Return a constant value.

get_double_lower_bounds(self)

get_double_upper_bounds(self)

get_double_variables(self)

get_integer_lower_bounds(self)

get_integer_upper_bounds(self)

get_integer_variables(self)

get_value(self, ScenarioIndex scenario_index)

load(cls, model, data)

register(cls)

reset(self)

set_double_variables(self, double[)

set_integer_variables(self, int[)

setup(self)

unregister(cls)

value(self, Timestep timestep, ...)

Attributes

children

comment

comment: unicode

dataframe

dataframe: object

double_size

double_size: 'int'

integer_size

integer_size: 'int'

is_constant

is_variable

is_variable: 'bool'

model

name

parents

scenario

scenario: pywr._core.Scenario

size

tags

tags: dict

timestep_offset

timestep_offset: 'int'