pywr.parameters.RollingMeanFlowNodeParameter
- class pywr.parameters.RollingMeanFlowNodeParameter(model, node, timesteps=None, days=None, initial_flow=0.0, **kwargs)
Returns the mean flow of a Node for the previous N timesteps or days.
- Parameters:
- modelpywr.core.Model
- nodepywr.core.Node
The node to record
- timestepsint (optional)
The number of timesteps to calculate the mean flow for. If days is provided then timesteps is ignored.
- daysint (optional)
The number of days to calculate the mean flow for. This is converted into a number of timesteps internally provided the timestep is a number of days.
- namestr (optional)
The name of the parameter
- initial_flowfloat
The initial value to use in the first timestep before any flows have been recorded.
- __init__(*args, **kwargs)
Methods
__init__(*args, **kwargs)after(self)before(self)finish(self)get_all_values(self)get_constant_value(self)Return a constant value.
get_double_lower_bounds(self)get_double_upper_bounds(self)get_double_variables(self)get_integer_lower_bounds(self)get_integer_upper_bounds(self)get_integer_variables(self)get_value(self, ScenarioIndex scenario_index)load(cls, model, data)register(cls)reset(self)set_double_variables(self, double[)set_integer_variables(self, int[)setup(self)unregister(cls)value(self, Timestep ts, ...)Attributes
childrencommentcomment: str
daysdays: 'int'
double_sizedouble_size: 'int'
initial_flowinitial_flow: 'double'
integer_sizeinteger_size: 'int'
is_constantis_variableis_variable: 'bool'
modelnamenodenode: pywr._core.AbstractNode
parentssizetagstags: dict
timestepstimesteps: 'int'