pywr.parameters.control_curves.ControlCurveInterpolatedParameter
- class pywr.parameters.control_curves.ControlCurveInterpolatedParameter(model, storage_node, control_curves, values=None, parameters=None, **kwargs)
A control curve Parameter that interpolates between three or more values
Return values are linearly interpolated between control curves, with the first and last value being 100% and 0% respectively.
- Parameters:
- storage_nodeStorage
The storage node to compare the control curve(s) to.
- control_curveslist of Parameter or floats
A list of parameters representing the control curve(s). These are often MonthlyProfileParameters or DailyProfileParameters, but may be any Parameter that returns values between 0.0 and 1.0. If floats are passed they are converted to ConstantParameter.
- valueslist of float
A list of values to return corresponding to the control curves. The length of the list should be 2 + len(control_curves).
- parametersiterable Parameter objects or None, optional
If values is None then parameters can specify a Parameter object to use at each of the control curves. The number of parameters should be 2 + len(control_curves)
Examples
In the example below the cost of a storage node is related to it’s volume. At 100% full the cost is 0. Between 100% and 50% the cost is linearly interpolated between 0 and -5. Between 50% and 30% the cost is interpolated between -5 and -10. Between 30% and 0% the cost is interpolated between -10 and -20
Volume: 100% 50% 30% 0% |----------------|--------|--------| Cost: 0.0 -5.0 -10.0 -20.0
>>> storage_node = Storage(model, "reservoir", max_volume=100, initial_volume=100) >>> ccs = [ConstantParameter(0.5), ConstantParameter(0.3)] >>> values = [0.0, -5.0, -10.0, -20.0] >>> cost = ControlCurveInterpolatedParameter(storage_node, ccs, values) >>> storage_node.cost = cost
- __init__(*args, **kwargs)
Methods
__init__(*args, **kwargs)after(self)before(self)finish(self)get_all_values(self)get_constant_value(self)Return a constant value.
get_double_lower_bounds(self)get_double_upper_bounds(self)get_double_variables(self)get_integer_lower_bounds(self)get_integer_upper_bounds(self)get_integer_variables(self)get_value(self, ScenarioIndex scenario_index)load(cls, model, data)register(cls)reset(self)set_double_variables(self, double[)set_integer_variables(self, int[)setup(self)unregister(cls)value(self, Timestep ts, ...)Attributes
childrencommentcomment: str
control_curvesdouble_sizedouble_size: 'int'
integer_sizeinteger_size: 'int'
is_constantis_variableis_variable: 'bool'
modelnameparametersparameters: list
parentssizestorage_nodetagstags: dict
values